Scientists have found that some drugs
from a group of anti-diabetic treatments may, in certain
circumstances, act on glucagon receptors in the body, meaning that
they could also potentially enable the release of sugar into the
bloodstream.
Researchers behind the study say that
while their results are speculative at this stage, they point to a
lack of complete information about the potential impact of a group of
treatments known as GLP-1 agonists, or incretin mimetics.
In particular, their survey found that
one such treatment has the hitherto unrecognized potential to
activate receptor sites for the hormone, glucagon. This can promote
the release of sugars into the blood, which is a process that GLP-1
agonists are supposed to prevent.
The paper, which is published in TheJournal Of Biological Chemistry, stresses that these are only initial
findings, and that more in-depth research will be needed before
“definitive conclusions can be drawn” about the existing results.
The researchers also say that there is
no evidence that existing GLP-1 agonists are in any way dangerous for
patients, but they do call for a more comprehensive approach to
testing new drugs of this type, before they are released on to the
market.
The work was carried out by a team of
researchers, led by academics from the University of Cambridge and
the University of Warwick. Dr Graham Ladds, from the Department of
Pharmacology and St John’s College, University of Cambridge, said:
“What we have shown is that we need a more complete understanding
of how anti-diabetic drugs interact with receptors in different parts
of our bodies.”
“GLP-1 agonists clearly benefit many
patients with Type 2 diabetes and there is no reason to presume that
our findings outweigh those benefits. Nevertheless, we clearly lack
a full picture of their potential impact. Understanding that
picture, and being able to consider all the components of target
cells for such treatments, is vital if we want to design drugs that
have therapeutic benefits for diabetes patients, without any unwanted
side effects.”
People affected by diabetes suffer from
excessively high blood sugar levels and resulting complications,
caused by the fact that their body does not produce enough insulin –
the hormone that enables the uptake of sugar from food. According to
the World Health Organization, about 347 million people worldwide
have diabetes and it is likely to become the seventh leading cause of
death in the world by the year 2030. Among adults, type 2 diabetes
accounts for the vast majority of cases.
GLP-1 agonists are a group of
injectable drugs, which are normally prescribed to patients who have
not been able to bring their condition under control through
lifestyle changes or with first-stage, tablet treatments.
They work by imitating the effects of a
naturally-occurring hormone, called a Glucagon-like peptide (GLP-1).
This regulates blood sugar levels both by stimulating the release of
insulin, and also by inhibiting glucagon, another hormone which
allows the liver to release stored sugar into the bloodstream.
In addition, both GLP-1 and GLP-1
agonists have a number of other potentially beneficial effects.
These include telling the brain when a person is full, and clinical
trials have shown that some GLP-1 agonists can promote weight loss.
Like other peptides, GLP-1 takes effect
by binding to specific receptor sites in the cells of our bodies.
GLP-1 agonists are synthetic molecules which are designed to bind to
these receptors in the same way.
Building on previous research, however,
the new study investigated the possibility that instead of activating
these receptors, GLP-1, or treatments which mimic it, might bind to
the receptor for glucagon instead. This belongs to the same general
“family” of receptors, but activating it could cause an unwanted
side-effect for people with diabetes because it can potentially
enable the release of more sugar into the bloodstream.
Although a limited number of previous
studies had suggested that this was not possible, the team’s
lab-based tests discovered that in certain conditions, GLP-1 can bind
to the glucagon receptor. Their initial experiments, carried out on
yeast containing the receptor, found that it was activated not only
by GLP-1, but also by a GLP-1 agonist, which was among three such
drugs that the group tested. Further experiments were then carried
out in a mammalian cell culture, with similar results.
The researchers found that the decisive
element was another protein called a receptor activity-modifying
protein (RAMP2). When RAMP2 was present, it prevented the peptides –
including the diabetes treatments – from binding to the glucagon
receptors. In its absence, however, binding became possible.
Little is currently known about RAMP2.
Tests in mice have, however, shown that its levels vary in different
parts of the body. In the liver, where glucagon receptors stimulate
the release of sugar into the blood, levels of RAMP2 appear to be
lower than in other parts of the body. As a result, it is possible
that some GLP-1 agonists could activate these receptors and,
potentially, promote the effects of glucagon, which they are supposed
to inhibit.
“The work shows that, contrary to
our previous assumptions, glucagon receptors can potentially be
activated by anti-diabetic treatments,” Dr Ladds added. “To
date, very little work has been done on RAMPs, but they clearly play
an important part in the process of regulating blood sugar, which is
core to helping people with diabetes. The study shows that there is
a critical need to take this into account when designing new
therapeutics.”
No comments:
Post a Comment